Tuning stiffness of cell-laden hydrogel by reversible host-guest interactions
نویسندگان
چکیده
منابع مشابه
A cell-laden microfluidic hydrogel.
The encapsulation of mammalian cells within the bulk material of microfluidic channels may be beneficial for applications ranging from tissue engineering to cell-based diagnostic assays. In this work, we present a technique for fabricating microfluidic channels from cell-laden agarose hydrogels. Using standard soft lithographic techniques, molten agarose was molded against a SU-8 patterned sili...
متن کاملReversible Janus particle assembly via responsive host-guest interactions.
Reversible assembly of Janus particles was manipulated by host-guest interaction of β-cyclodextrin (β-CD) and azobenzene. One side of every Janus particle was modified with β-CD. Superstructures of Janus particles were formed by adding azobenzene-containing polymers to the dispersion of Janus particles. The superstructures were reversibly disassembled by adding α-CD or light irradiation.
متن کاملReversible guest exchange mechanisms in supramolecular host-guest assemblies.
Synthetic chemists have provided a wide array of supramolecular assemblies able to encapsulate guest molecules. The scope of this tutorial review focuses on supramolecular host molecules capable of reversibly encapsulating polyatomic guests. Much work has been done to determine the mechanism of guest encapsulation and guest release. This review covers common methods of monitoring and characteri...
متن کاملDigital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness.
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels-water-swollen polymeric networks that act as ECM substrates-has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, "digital plasmonic patterning" (DPP) is developed to mechanically alter ...
متن کاملReversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host–guest interactions
Supramolecular chemistry addresses intermolecular forces and consequently promises great flexibility and precision. Biological systems are often the inspirations for supramolecular research. The G-quadruplex (G4) belongs to one of the most important secondary structures in nucleic acids. Until recently, the supramolecular manipulation of the G4 has not been reported. The present study is the fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2016
ISSN: 2296-4185
DOI: 10.3389/conf.fbioe.2016.01.02362